CBCS Scheme

LENTRAL *

USN

17MAT21

Second Semester B.E. Degree Examination, June/July 2018 Engineering Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1

a. Solve
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 6e^{3x}$$
. (06 Marks)

b. Solve
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 4y = 3e^x$$
.

(07 Marks)

(07 Marks)

c. Solve by the method of variation of parameter
$$y'' + y = \frac{1}{1 + \sin x}$$
.

OR

2 a. Solve
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 25y = e^{2x} + \sin x + x$$
. (06 Marks)

b. Solve
$$y'' + 4y' + 5y = -2\cosh x$$
; find y when $y = 0$ and $\frac{dy}{dx} = 1$ at $x = 0$.

c. Solve by the method of undetermined coefficient
$$(D^2 - 3D + 2)y = x^2 + e^{(07 \text{ Marks})}$$

Module-2

3 a. Solve
$$x \frac{d^2y}{dx^2} - \frac{2y}{x} = x + \frac{1}{x^2}$$

(06 Marks)

b. Solve
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$

(07 Marks)

c. Find the general and singular solution for
$$xp^2 + xp - yp + 1 - y = 0$$
.

(07 Marks)

a. Solve $(2x+3)^2y'' - (2x+3)y' - 12y = 6x$

b. Solve
$$xy\left\{\left(\frac{dy}{dx}\right)^2 + 1\right\} = (x^2 + y^2)\frac{dy}{dx}$$
.

(07 Marks)

(06 Marks)

c. Find the general solution by reducing to Clairaut's form
$$(px-y)(x+py) = 2p$$
 using $U = x^2$ and $V = y^2$.

Module-3

5 a. Find the partial differential equation of all spheres
$$(x-a)^2 + (y-b)^2 + z^2 = c^2$$
. (06 Marks)

b. Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$$
 for which $\frac{\partial z}{\partial y} = -2\sin y$ when $x = 0$ and $z = 0$ when y is an odd

multiple of
$$\frac{\pi}{2}$$
.

(07 Marks)

17MAT21

OR

- 6 a. Form the partial differential equation by eliminating the arbitrary function from $z = y\phi(x) + x\psi(y)$. (06 Marks)
 - b. Solve $\frac{\partial^2 z}{\partial y^2} = z$; given that when y = 0, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$. (07 Marks)
 - c. Find the various possible solution for one dimensional heat equation by the method of separation of variables. (07 Marks)

Module-4

7 a. Prove that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

(06 Marks)

b. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dz \, dy \, dx$

- (07 Marks)
- c. Evaluate $\iint xy(x+y)dxdy$ over the area between $y = x^2$ and y = x.
- (07 Marks)

OR

- 8 a. Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration.
- (06 Marks)
- b. Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.
- (07 Marks)

e. Prove that with usual notations $\beta(m,n) = \frac{\lceil m \rceil n}{\lceil m+n \rceil}$.

(07 Marks)

Module-5

a. Find the Laplace transform of $\frac{\cos 2t - \cos 3t}{\cos 2t - \cos 3t}$

- (06 Marks)
- b. Express the function in terms of unit step function and hence find its Laplace transform

$$f(t) = \begin{cases} \cos t & 0 < t < \pi \\ 1 & \pi < t < 2\pi \\ \sin t & t > 2\pi \end{cases}$$

(07 Marks)

c. Find $L^{-1}\left\{\frac{s+3}{s^2-4s+13} + \log_e\left(\frac{s+1}{s-1}\right)\right\}$.

(07 Marks)

OR

10 a. Find the Laplace transform of the periodic function

$$f(t) = \begin{cases} t & 0 < t < \pi \\ \pi - t & \pi < t < 2\pi \end{cases}$$
 of period 2π .

- (06 Marks)
- b. Using convolution theorem obtain the inverse Laplace transform of $\frac{s}{(s+2)(s^2+9)}$
 - (07 Marks)
- c. Solve the equation $y'' 3y' + 2y = e^{3t}$; y(0) = 1 and y'(0) = 0 using Laplace transform technique. (07 Marks)

* * * * *